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The analysis by Shapiro et al. (1969) of a two-dimensional peristaltic pump at small 
Reynolds number and with long wavelengths is extended to include a Newtonian 
peripheral layer adjacent to the wall to simulate the effect of a coating in physiological 
flows. An earlier analysis by Shukla et al. (1980) violates mass conservation because 
of an incorrect deduction of the interface shape. We present a detailed analysis of 
the effect of the peripheral layer on the fluid motions, the pumping characteristics, 
and the phenomena of reflux and trapping. For prescribed wall motion, a peripheral 
layer more viscous than the inner fluid improves pumping performance, while a 
less-viscous outer layer degrades performance. Even a very thin peripheral layer may 
substantially reduce pumping if the viscosity in this layer is very low relative to the 
inner region. The effects of the peripheral layer on reflux and trapping depend on the 
conditions which are held fixed while making the comparison. However, the general 
trend with decreasing peripheral-layer viscosity is towards an overall decrease in 
trapping, a decrease in reflux with fixed total volume flow rate, but an increase in 
reflux with fixed pressure head. 

1. Introduction 
A peristaltic pump is a device for pumping fluids, generally from a region of lower 

to higher pressure, by means of a contraction wave travelling along a tube-like 
structure. This travelling-wave phenomenon is referred to as ' peristaltis '. Peristalsis 
originated naturally as a means of pumping physiological fluids from one place in the 
body to another, and is the primary pumping mechanism in swallowing (and indeed 
all the way through the alimentary canal), in the ureter, the bile ducts, the ductus 
efferentes of the male reproductive tract, and even in some small blood vessels. 
Humankind has borrowed the idea and used it in applications where the material 
being pumped must not be contaminated (e.g. blood), or is corrosive and should not 
be in contact with the moving parts of ordinary pumping machinery. 

Considerable analysis of the pumping characteristics and the physical mechanisms 
involved has been carried out, primarily for the case of a homogeneous Newtonian 

t Current address: Department of Mechanical Engineering, Clemson University, Clemson, 
SC 29634-0921, USA. 
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fluid pumped by a periodic train of sinusoidal contractions. For the physiologically 
relevant limit of inertia-free flow with infinitely long waves, the classical analysis was 
given by Shapiro, Jaffrin & Weinberg (1969). The main features of this peristaltic 
pumping were described and the phenomena of reflux and trapping e1ucidated.t The 
next-order terms in the expansions to higher Reynolds numbers and wavenumbers 
were later calculated by Jaffrin (1973), and by Buthaud (1971), who found that the 
zeroth-order solution is good to small finite values of Reynolds number and 
wavenumber. This suggests that the approximations of no inertia and small 
curvature (which are relatively simple) are adequate for studying the primary 
mechanisms involved at small finite Reynolds and wave numbers. The analysis shows 
that, physically, pumping by peristalsis is effected primarily by frictional forces. 
Indeed, for any wave shape, fluid will be pumped when the tube is suEciently 
occluded by the travelling waves (see Lykoudis & Roos 1970); with complete 
occlusion, a peristaltic pump is obviously a positive displacement pump. A summary 
of the analyses of Shapiro, Jaffrin and others is given by Jaffrin & Shapiro (1971). 

There are of course differences between peristalsis as found in nature and the 
analyses described above. Physiologically, for example, the wall of the structure 
doing the pumping (the oesophagus, the ureter, etc.) is typically coated with a fluid 
with properties different from those of the fluid being pumped. Often one or both 
fluids are non-Newtonian. However, as a first step towards understanding the effect 
of a fluid coating on the transport, it is of interest to extend the single-fluid 
Newtonian analysis to include a Newtonian peripheral layer of different viscosity. 
Such an analysis was attempted by Shukla et al. (1980), limited to the case with a 
decrease in pressure in the flow direction. However, their analysis violates the 
condition that mass must be independently conserved in the peripheral layer and the 
inner layer. The error enters in their deduction of an interface shape, independent 
of viscosity ratio, that is not a streamline in the steady ‘wave frame’, as it should 
be. The error is repeated in a later publication (Shukla & Gupta 1982). 

The goal of this paper is to solve the problem of a peristaltic pump with a 
Newtonian ‘core’ fluid and peripheral layer, analysing the effects of the peripheral 
layer on the pumping characteristics and the fluid motions, especially on reflux and 
trapping. We make the same approximations as Shapiro et al. (1969) ; inertial forces 
and curvature effects are neglected. Consistent with the usual definition of a pump, 
attention is focused on cases with a net increase in pressure in the flow direction, 
although the solution is applicable to any pressure gradient. 

The details of the mathematical development for any general wave shape are given 
in the next section. In $3 the analysis for a sinusoidal wavetrain is presented, and in 
the final section the results are summarized and general conclusions drawn. For sim- 
plicity, this work is limited to the plane case. The principal differences between the 
two-dimensional and axisymmetric flows in the single-fluid problem appear in the 
parametric range in which reflux and trapping occur on a plot of relative volume flow 
rate versus relative occlusion (9  3.7, figure 15). Furthermore, we consider here only 
the case where a peripheral layer exists adjacent to the wall of the peristaltic pump. 
When trapping occurs, it is also possible for the interface between the two fluids to 
fall within the trapped region, thus representing a bolus of one viscosity trapped 
within a fluid of another viscosity being carried along with the peristaltic wave. The 
analysis of bolus transport is currently under investigation. 

f Reflux here refers to the condition whereby some fluid particles move, on the average, in a 
direction opposite to that in which there is net pumping. Trapping occurs when the tube is 
sufficiently occluded or the average flow rate sufficiently high that a bubble of‘ trapped ’ fluid moves 
with the peristaltic wave at the wave speed. 



InJEuerice of peripheral layer on peristaltic pumping 497 

FIGURE 1. Non-dimensionalized peristaltic pump in the 'laboratory' frame a t  time T = 0. H and 
H ,  are the wall and interface shapes, periodic in 6-7. a = H,(O) .  The wave moves to the right with 
non-dimensional speed 1 .  

2. The mathematical treatment 
2.1. The problem in the laboratory frame 

Consider a two-dimensional peristaltic pump, non-dimensionalized as shown in 
figure 1 .  Two infinite periodic wavetrains given by H(<-T) travel symmetrically to  the 
right down the walls of the channel. Transverse distances are non-dimensionalized 
with the average channel half-width a ,  axial distances with the wavelength A ,  axial 
velocities with the wave speed c (so the non-dimensional wave speed is unity), and 
time ( T )  with the wave period hlc. Within the pump there is an inner core fluid with 
viscosity p l ,  and a peripheral layer with viscosity p,, both Newtonian, and separated 
by the interface H1(6-7), also periodic, but at this stage unknown. 

For simplicity, the wave is sketched as a single Fourier mode; however, that 
constraint is not used in the general analysis. Each material point on the wall 
executes a periodic transverse motion in time. This requires slight periodic extension 
of the wall material (e.g. Taylor 1951), but in the small-slope approximation this is 
negligible. 

For any periodic geometry, the total volume flow rate of the pump averaged over 
one cycle, denoted by q, will be time-independent. In  addition to  parameters 
describing the wall motion and peripheral layer, & is a function of the mean pressure 
difference between the ends of the pump or, for an infinite wavetrain, the pressure 
difference AP across a unit wavelength.? The total average volume flow rate is given 
by the sum of the flow rates in the core fluid Gl, and in the peripheral fluid layer &, : 

where G1 is the integral of the axial velocity component up to  H ,  and &, the integral 
from H ,  to H ,  each averaged over one period and non-dimensionalized by ca. 

The dependent variables are non-dimensionalize,d as follows : 

( 2 . 2 )  

where dimensional quantities are indicated with A ,  and k = a / h  is a wavenumber. 
[I' and 1.' are the 6- and q-components of velocity respectively, and p is the pressure. 

t Jaffrin & Shapiro (1971) show that for a single-fluid pcmp a periodic and infinite wavetrain 
is mathematically equivalent to a finite-length pump with an integral number of waves and 
constant pressure difference between the ends. This result can be extended to  the peripheral layer 
case. 
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FIGURE 2. The peristaltic pump in the steady ‘wave’ frame. Material wall points move to the left 
with axial velocity - 1, and fluid motions are periodic in <( = 6- 7). Viscosity is non-dimensionalized 
with ,ul. T = average thickness of core fluid (T 4 a in general). 

Since our interest is in the effect of variations in peripheral-layer viscosity, pressure 
is non-dimensionalized with the core-fluid viscosity, to be regarded as finite. The 
stream function Y ,  like the volume flow rates, is non-dimensionalized by ca. 

I n  the limit of infinite wavelength and zero Reynolds number (defined by 
Re = (acp/p,) k), the Navier-Stokes equations reduce to 

where ,Z is the viscosity a t  the point (6,y) non-dimensionalized by p,. Neglecting 
inertia removes effects due to density and acceleration, and the approximation of 
infinite wavelength removes curvature effects. The result is a local rectilinear channel 
flow a t  every 6, decoupled from every other t-location. Variations in enter through 
the boundary conditions alone. At the interface between the core fluid and the 
peripheral layer there is a discontinuous jump in ,Z. Since the shear stress ,it’, is 
continuous there, a discontinuity in vorticity - 16 results. 

2.2. Solution in the wave frame 
In the ‘laboratory’ frame where the peristaltic wave is moving past the observer with 
the speed c ,  the flow field is unsteady. The steady frame of reference of figure 2 is 
obtained by moving with the wave so that the boundary shape remains constant in 
time. All variables are now periodic in 5 = 5-7. Transformations between frames 
are as follows, where wave-frame quantities are on the left and laboratory-frame 
quantities are on the right: 

5=5--7, y = q >  

u= u-1, v =  v, p = p ,  

$=!P-q, q = Q - 1 =  Q l + q 2 ,  Q1 = a-r - 

where T = ji H I ( < )  d< is the average thickness of the inner layer. 
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We solve the problem in the wave frame in terms of the stream function @, which 
from ( 2 . 3 )  satisfies 

( 2 . 5 ~ )  

where ,C=1, O < r < H , ,  (2.5b) 

, C = & q &  H, < 7 Q H ,  (2 .5~)  
Pl 

together with the conditions : 

@ = 0, @T,, = 0, at '1 = 0, ( 2 . 6 ~ )  

@ = - 1 ,  @ = q = const, at 7 = H ,  (2 .6b )  

@ = q1 = const, at 7 = H, .  ( 2 . 6 ~ )  

On the symmetry plane the stream function and the slope of the velocity profile are 
zero. The first condition a t  H i s  no-slip, the requirement that  in the laboratory frame 
each material particle on the wall move only vertically. The other two are continuity 
conditions. Since mass must be conserved in the pump as a whole and independently 
in both the inner region and the peripheral layer, the outer boundary H and the 
interface Hl must be streamlines in the steady frame. 

Boundary conditions are also required across the 'ends' of the pump. This may 
be given by specifying either AP, or Q, since AP and Q are interdependent. I n  the 
wave frame i t  is most convenient to  specify q( = Q- l ) ,  and AP calculated by 
integrating the axial pressure gradient over one wavelength. 

Integration of the equations of motion 

yields the following, valid for any prescribed viscosity distribution k(7; 5) : 

1 

A straightforward integration of (2.5a) with the boundary conditions ( 2 . 6 a ,  b)  

where 

( 2 . 7 ~ )  

(2.7 b )  

Once the viscosity variation is prescribed, ( 2 . 7 )  may be integrated to  obtain the 
stream function and velocity fields. For the special case of two fluid layers, each of 
constant viscosity as defined by (2 .5b,  c), this yields 

with the corresponding velocity profile given by a@/aq. The axial pressure gradient 
is inferred from ( 2 . 3 )  : 
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These results are for any wave shape H([). We restrict this analysis to a simple 
sinusoidal wave given by 

The stream function, velocity field and pressure field may then be computed from 
(2.8) and (2.9) once the interface shape H, has been obtained. 

H(<) = 1 + @ sin 27~5. (2.10) 

The solution f o r  the interface 

continuity condition +(HI) = ql ,  Where q, is a constant: 
A fourth-order algebraic for Hl may be deduced from (2.8) by applying the 

[2(p- 1)]H;I+ [2(p- 1 ) ~ 1 - ( q + H )  (2p-3)]H~-[[H2(H+3q)]Hl + [2q, H3]  = 0. 
(2.11) 

The coefficients of (2.11) are functions of the parameters p, q and q , ;  and of the 
wall height H(<). A consequence of the small-slope approximation, the 5-dependence 
of HI, enters locally through the <-dependence of H. 

The value of q1 in (2.11) is specified by a parameter describing the average 
thickness of the peripheral layer, most conveniently chosen as a,  the value of H ,  a t  
6 = 0 (also 6 = $, 1 ) .  Prom (2.11) the relationship between a and q1 is given by 

(2.12) 

Having specified q1 through a, (2.1 1)  is solved by radicals (e.g. see Birkoff & MacLane 
1953). The four roots are, in general, complex. Only one root is both real and in the 
range 0 < H I  < H. I n  the limit p - t l ,  (2.11) reduces to a third-order algebraic 
equation describing a single streamline in a single-fluid pump. 

The limit ,uz + 00 

The condition that mass be conserved independently in the core fluid and 
peripheral layer, though properly stated, was not satisfied in the analyses of Shukla 
et al. (1980) and Shukla & Gupta (1982). There they deduce HJH = a, independent 
of the viscosity ratio ,u E p2/p1. The following argument shows that this is incorrect, 

Consider the limit p2 approaching infinity with p1 finite (so p-t 00) .  The no-slip 
condition at the wall requires that in this limit the velocity U in the peripheral layer 
goes to zero in the laboratory frame [let p+ 00 in (2.8b)l. In  the wave frame the axial 
velocity is therefore uniform and equal to - 1, so 

u dy +- (H- H,) as p+ 00. 
q 2  = J,, (2.13) 

Thus, since qz must be constant to conserve mass, in the limit p-t co the peripheral 
layer approaches constant thickness (1 -a)  and 

H1($ + H(5) - (1  -a)  as p --f co. (2.14) 

Since the coefficients in (2.11) depend on p, H, is in general a function of p, 
approaching (2.14) in the limit p-t 00. 

The result Hl/H = a,  on the other hand, has no p-dependence, nor does i t  have 
the limit required by (2.14). In  fact (2.13) yields q2 = (a- l )H(x) ,  violating the 
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P+O 

- - 6  
FIQURE 3. Qualitative instantaneous axial velocity profiles and streamlines a t  different 

p = p2/p,. Dotted lines indicate parabolic extensions of the peripheral-layer profile. 

continuity condition qz = constant. It turns out that HI  K H violates continuity at 
all viscosity ratios (except in the limit a+ 1 ,  when H I  + H ) .  

Note that in the limit ,u + co the peristaltic pump is again a single-fluid pump, but 
with greater occlusion. The peripheral layer becomes part of the solid b0undary.t 

3. The results 
3.1. The f lu id  motions 

Qualitative sketches of the instantaneous velocity and streamline fields in the 
laboratory frame are shown in figure 3. The discontinuity in slope at HI  is required 
to maintain constant shear stress. As the viscosity ratio becomes infinite, the fl  

t A single-fluid pump could, of course, be defined from the outset with a wall of any shape and 
thickness. Here we consider a specified outer-wall shape and a peripheral fluid layer adjacent to 
the wall in the limiting process p+ 00, whereby the peripheral layer becomes a constant-thickness 
solid layer. 
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I I I I I I 
0 0.5 5 1 

FIGURE 4. The variations - in shape of the interface with viscosity ratio p,. = 0.5, a = 0.7, 
Q = 0.1 ; ---, H , / H  = a (Shukla et al. 1980). 

velocity component in the peripheral layer vanishes, producing a single phase pump 
with occlusion $1.. 

The limit , u + O  is at first glance a curious one. The velocity in the inner region is 
constant in 7, locally a plug flow. However, the U-velocity varies in 6,  so the inner 
region may not be interpreted as a rigid solid in this limit. The boundary condition 
at the wall requires that the inner region, like the peripheral layer, be deformable 
at all viscosity ratios since in the laboratory frame material points on the interface, 
together with the wall, move laterally. One must interpret the limit , u + O  as one in 
which the peripheral-layer viscosity vanishes, as may be seen through examination 
of the dimensional forms of the equations €or velocity and pressure gradient. This 
is a reflection of choosing ,ul in non-dimensionalizing the equations of motion, 
whereby ,ul must be regarded as finite as ,u is varied. Thus, in the limit , u + O ,  (2.9) 
yields dp/dc+ 0 with the consequence that any finite pressure differential produces 
infinite flow rates in a peripheral layer of finite thickness ($53.3, 3.8). 

In the wave frame particle trajectories lie along streamlines. Depending on the 
occlusion q5 and the volume flow rate &, two classes of patterns are possible for fixed 
pas may be observed, for example, in figure 13. At large $ and Q (figure 1 3 b , c )  
there is a region where the fluid is ‘trapped’ relative to the wave, moving with 
average velocity equal to the wave speed. Pumping also occurs in figure 13(a); 
although trapping does result in net pumping it is not a necessary condition for 
pumping to occur. 

3.2. The interface 
The interface is a streamline in the wave frame, as shown for example in figures 13 
and 14. When no trapping exists there is no restriction on our choice for a. With 
trapping, however, we require that H ,  remain outside the trapped region, restricting 
a to values above a lower limit. 

Figure 4 is an example showing the variation in shape of the interface with 
viscosity ratio. Low viscosity ratios are associated with thinner layers in the 
constricted region of the pump. As p+ 00 the peripheral-layer thickness becomes 
uniform. The interface shape H ,  cc H of Shukla et al. (1980) is never obtained. 

The thickness of the peripheral layer is most conveniently specified with the 
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parameter a. The difference between the average thickness of the inner core region 
T and a turns out to be a t  most about two per cent (note that T+a asp+  a), so that 
(1  -a) does in fact serve as an effective measure of the thickness of the peripheral 
layer. 

3.3. The pumping characteristics 

An integral of dpldc (2.9) over one wavelength produces the relationship between 
the average volume flow rate Q and the pressure rise per wavelength AP: 

As a ‘pump’ the device operates against a positive pressure head AP in the range 
0 < AP < APo, and with positive flow rate Q in the range 0 < Q < $,.t The functions 
Q, and AP, me the maximum values in this range, Go defined as the value of Q when 
AP = 0, and AP, the value of AP when a, = 0. These are given by 

- 

where 

(3 .2a)  

(3.26) 

Whenp = 1 ,  P = 1 and (3 .2)  integrate to the single-fluid result of Shapiro et al. (1969) 

(3 .3a)  

(3.36) 

The overall pumping characteristics of a two-fluid peristaltic pump are illustrated 
in figures 5, 6 and 7 ,  for a = 0.8. In figure 5 the relationship between AP and Q is 
plotted at  different viscosity ratios when q5 = 0.7. In the single-fluid pump and AP 
are related linearly at each occlusion value 4. In the two-fluid pump, however, /3 is 
a function of Q through H, ,  producing a nonlinear dependence of AP on &. Only in 
the limits ,u+l (when P = I ) ,  p + 0  (when AP = 0 )  and ,u+m (again a single-fluid 
pump) are AP and 0 linearly related. 

The peripheral layer is found to have a large effect on the overall pumping 
characteristics. For prescribed wall motion, a larger viscosity in the peripheral layer 
( p  > 1)  dramatically increases the pumped volume flow rate Q compared with the 
single-fluid pump ( p  = 1 )  for fixed AP; for prescribed a, the pump can work against 
a greater pressure head. These effects are reversed when the peripheral layer has 

t It should be remarked that the case in which the peristaltic wave and mean pressure gradient 
tend to move the fluids in the same direction ( A P  < 0) is included in this analysis. No example 
has been computed because the fluid mechanically interesting phenomena, such as ‘trapping’ with 
partial occlusion and local marginal ‘reflux’, occur primarily when the pressure head acts in the 
direction opposite to the net flow. Indeed, ‘reflux’ can only occur with a positive pressure head. 
Nevertheless, ‘ co-pumping ’ may be physiologically relevant, e.g. in the intestines. 
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0 0.1 0.2 0.3 0.4 0.5 0.6 1 

Q 
FIGURE 5.  The pumping characteristics: versus AP for different p.  #J = 0.7,  a = 0 .8 ;  

_ _ _  , Shukla et al. (1980). 

lower viscosity than the inner fluid ( p  < 1 ) .  In  fact, as p+O, APi.0 and the pump 
no longer pumps ! This is not surprising, since peristaltic pumping depends on viscous 
forces which originate a t  the walls. When p = 0, any finite (positive) pressure 
differential AP produces infinite (negative) volume flow rates &. Infinite velocities 
occur in the peripheral layer where the viscosity is effectively zero (53.8). 

Figure 5 shows that Shukla et al. (1980) underestimate pumping performance a t  
high viscosity ratios, and overestimate performance when p < 1 .  In  contrast with 
(3.2), where both and AP, are functions o f p  and Q is a nonlinear function of AP, 
constant H J H  leads to a linear relationship between AP and Q, no dependence of 
Q, on p, and incorrect AP,. 

Figures 6 and 7 show the dependence of&, and AP, on p.  Whereas &, is relatively 
insensitive to p, AP, shows a much greater effect. As $ + O ,  the peristaltic pump 
approaches a purely pressure-driven channel flow ; consequently a,, and AP,+O. As 
$i.l all fluid becomes trapped and 0, tends towards 1, the maximum flow rate 
attainable (the curves stop short of q5 = 1 ,  however, since for a fixed a point is always 

- 
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FIGURE 6. The variation of &, with #J for different p. a = 0.8. 

reached where the interface moves into the trapped region; figure 15 has the same 
behaviour). In  the limit $+ 1 an infinite pressure rise is required to force Q to zero. 
When 4 < 1, increasing the viscosity ratio increases APo, 

The mechanical efficiency E of the two-fluid peristaltic pump compared with the 
single-fluid pump is shown in figure 8. Following Shapiro et al. (1969), efficiency is 
defined as the average rate (per wavelength) at which work is done by the moving 
fluid against a pressure head, divided by the average rate a t  which the walls do work 
on the fluid, where averages are taken over one period. The difference between E and 
unity is the rate at which energy is dissipated to internal energy relative to the power 
applied a t  the walls. For the two-fluid pump the efficiency is given by 

where q = &- 1 .  Equation (3.4) integrates to the result given by Shapiro et al. when 

Figure 8 shows that greater occlusion increases efficiency at all viscosity ratios; a 
more-viscous peripheral layer improves efficiency, and a less-viscous layer degrades 
efficiency compared with a single-fluid pump. When $ = a, as in figure 8 ( b ) ,  the tube 
becomes totally occluded as p+ co, approaches Go, and E is indeterminate. In  the 
limit p+O, on the other hand, AP+O,&+&, (by definition), and the efficiency drops 
to zero. In this limit the pump can do no work. 

The effect of the thickness of the peripheral layer is shown in figure 9 for p = 0.1 

p =  1. 
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FIQURE 7. The variation of AP, with 4 for different y. a = 0.8. 

and 10. When ,u > 1, the peripheral layer apparently has a large effect only when 
the layer is rather thick. At small viscosity ratios, however, even a 1 Oj0 thick layer 
can easily reduce pumping by 5O0iO or more. Indeed, as ,u + O  peristalsis ceases to 
produce pumping with any finite-thickness peripheral layer. 

Clearly pumping performance is strongly affected by the presence of a peripheral 
layer. In general, performance is enhanced when the peripheral layer is more viscous 
than the core fluid, and degraded when the peripheral layer is less viscous than the 
core fluid. The same conclusions may be drawn when one considers the effect of the 
peripheral layer on the core fluid alone (53.8). 

3.4. The method of comparing two-JZuid and single JZuid pumps 

In the sections that follow we study the influence of the peripheral layer on reflux 
and trapping. In  making the comparisons the wave shape and wave speed are held 
fixed (another possibility, for example, might be constant power input). We are at 
liberty, however, to choose either constant pressure head AP, or constant flow rate 
Q as end conditions. The distinction may be significant since a change in ,u with 
constant Q is accompanied by a change in AP, whereas fixed AP is associated with 
a lower limit in ,u below which Q becomes negative. 
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0 0.5 

QIQO 
1 

FIGURE 8. The mechanical efficiency of the two-fluid pump over the pumping range 0 d d &, 
for different p. When q3 = a, as pu-. w the tube becomes totally occluded ( b ) .  

Since fixed Q is more straightforward to compute and is not complicated by a lower 
limit in p we consider the effect of the peripheral layer first with constant-volume 
flow rate. I n  $3.8 we discuss comparisons a t  constant pressure head - more suitable, 
perhaps, to the laboratory situation. It turns out that  the effect of the peripheral 
layer does depend on how the comparisons are made. 

3.5. Rejlux at constant Q 
‘Reflux’ here refers to the presence of fluid particles that  move, on the average, in 
a direction opposite to the net flow. The phenomenon has had physiological 
importance in that it implies the possible backward migration of bacteria against the 
direction in which physiological fluids are pumped. Our interest is to determine the 
effect of the peripheral layer on the regions in which reflux occurs, and on the amount 
of reflux in these regions. 

As pointed out by Shapiro et al. (1969), the details of reflux depend on the tra- 
jectories of individual fluid particles and require use of material, or ‘Lagrangian’ 
coordinates. Consider the schematic in figure 10, where a particle trajectory is viewed 
in the laboratory frame as the peristaltic wave travels progressively to  the right. The 
fluid particle moves through one ‘particle period’, the time it  takes to return to the 
same position relative to  the wave. The ‘particle cycle’ then repeats itself.? Super- 

t Note that the particle period is not in general equal to the wave period (Shapiro et al. 1969). 

17 E L M  174 
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Q 
FIGURE 9. The effect of thickness of the peripheral layer: versus AP for different a: when 

~ ~ 1 0 , 0 . 1 . ~ ~ 0 . 7 ~ - - , ~ ~ 1 0 ~ - - - , ~ ~ 0 . 1 .  

imposed on the laboratory frame are shown streamlines in the moving wave frame 
(boxed) which remain fixed relative to the moving wave. Since the particle moves 
along a streamline in the wave frame, i t  is always associated with the same wave- 
frame stream function $ during its trajectory when viewed in the laboratory frame. 
It is evident from figure 10 that the average of any particle property over one 
particle cycle in the laboratory frame will yield the same value for all particles 
associated with the stream function @ in the wave frame. After averaging, therefore, 
@ may be used unambiguously as a marker of a fluid particle, i.e. as a material 
coordinate. 

Following Shapiro et al. (1969), we average the axial volume flow rate between the 
centreline of the tube and the particle trajectory over one particle cycle in the 
laboratory frame. The volume flow Q$(C) associated with a particle at the position 
f [  and time T in the laboratory frame, and on the streamline @ in the wave frame, 
is given by the transformation between !P and @ in (2.4) : 

(3.5) 
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7 = 0  

7 = 0.25 

7 = 0.50 

= 0.75 

7 = 1.00 

r = 1.25 

Particle trajectory G 
FIGURE 10. Example schematic of a particle trajectory in the laboratory frame. The peristaltic 
wave moves to the right; the streamlines in the wave frame (shown boxed) remain fixed relative 
to the moving wave. The particle trajectory in the laboratory frame is always associated with the 
same stream function + in the wave frame. 

where q(5;  $) is the position of the particle on the streamline $ a t  a particular 
{( = E-.r)-location. Averaging over one particle cycle yields 

A plot of Q+/Q against $ / q  identifies the reflux zone. The wall is reached in the limit 
$ /q+  1, where Q&+ 1 ,  and the centreline in the limit $ / q + O  where G$/&+O. 
Reflux appears as a region where ?&/a decreases with increasing $ / q ,  so if a reflux 

17-2 



510 J .  G. Brasseur, S. Corrsin and N .  Q .  Lu 

r 

/I= 00 loo 10 

11 1 i 

0:5 ' ' ' 0.6 0.7 0.8 0.9 1 .O 

+I9 

0 0.5 1 

+./q 

FIQURE 11. e$/& versus +/p with fixed & for different p. The reflux layer (the region with negative 
- slope) spreads away from the wall with increasing p.  R = (volume flow rate in the reflux layer)/&. 
Q = 0.21, q5 = 0.5, a = 0.8. 

layer exists along the wall, as was found by Shapiro et al. (1969) for the single-fluid 
case, g@/Q should increase to a value greater than 1, then decrease to 1 at the wall. 
- A typical plot of &@I& against $./a is shown in figure 11 as a function of p (holding 
Q fixed) for a case where reflux already exists when p = 1 .  The reflux zone is always 
adjacent to the wall; however, as the viscosity ratio increases, it spreads inward 
towards the centreline. At the same time, the flow in the peripheral layer decreases 
to zero at p = 00, when the reflux layer has moved adjacent to the interface (which 
now becomes the new wall). 

The reflux ratio R, defined as the volume flow rate in the reflux layer divided by 
the total volume flow rate &, is given by the peak value of a@./& above 1 .  A plot of 
R against p is given in figure 12 for cases where reflux does and does not exist at 
,u = 1. Reflux disappears for p small, reaches a maximum as ,u increases, and 
asymptotes to a non-zero value as p+ a. 

The general conclusion that reflux increases with increasing viscosity ratio and 
may disappear at sufficiently small p is valid when comparisons are made with 
volume flow rate held constant. We shall find the opposite trend when comparisons 
are made a t  constant pressure head. 
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FIQURE 12. Variation in reflux ratio R with ,u for fixed &. r$ = 0.5, a = 0.8. 

3.6. Trapping at constant & 
Like the single-fluid pump, trapping occurs in the two-fluid pump at high flow rates 
and large occlusion as demonstrated in figure 13 for the case ,u = 0.1. The existence 
of a peripheral layer, however, has a strong influence on the size of the trapped region. 
Figure 14 shows that when is held constant, the trapped region shrinks, and in this 
case disappears as the viscosity ratio decreases to small values. We should keep in 
mind that not only is the size of the trapped region decreasing, but so is the pressure 
head against which the pump can pump. 

3.7. The rejlux and trapping limits 
For a peristaltic pump with specified wave shape and wave speed there is a range 
o f &  (or equivalently AP) where trapping occurs, and a range where reflux occurs, 
for a prescribed peripheral-layer thickness and viscosity ratio. Here we follow 
Shapiro et al. (1969) and determine the limits of the trapping and reflux regions in 
the space defined by &I&,, and $ for the two-fluid pump. 

Trapping limit 
The trapping limit is given by the value of& where @ = 0 at some 7 just greater 

than zero. The shape of the trapped region is obtained by setting @ = 0 with 7 =I= 0 
in (2.8a): 

(3.7) 
( p  - 1) H?[3(q+ H)-2H1] +H2[3(q+H) -2H] 

,u(q + H) 
32 = 

For trapping to occur r2 must be greater than zero at some g. Requiring that both 
the numerator and denominator in (3 .7)  be of the same sign so that 7 is real, and 
observing that the denominator goes through a maximum and minimum at 6 = 
and respectively, leads to two conditions on & for the existence of trapped fluid: 

- 
Q-<&<&+,  (3 .8a)  

where (3.8b) 

( 3 . 8 ~ )  
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FIGVRE 13. Streamlines in the wave frame showing the appearance of trapping (shaded region) at 
large-volume flow rates with a peripheral layer of low viscosity. Q0 = the maximum (positive) 
volume flow rate, obtained with A P =  0 [equation (3 .2b ) l .  q5 = 0.95, a = 0.8, p = 0.1; ---, 
interface. 

H ,  max and H ,  min refer to the values of H ,  at y = and respectively. When p = 1, 
(3 .8)  - reduces to the result given by Shapiro et al. (1969) for the single-fluid pump. 

Q- defines the trapping limit, the value of Q above which trapping occurs. 
Equation (3.8b) must be solved iteratively since Q- is a function of H ,  which itself 
is a function of -&. Having found the trapping limit Q- , Qo is obtained from (3 .2a) .  
The trapping limits at different viscosity ratios are given in figure 15. The area where 
trapping may be found is extended when p increases and reduced when ,u decreases. 
It is interesting that although the trapping area does not become very narrow in the 
limit ,u 30, it is still possible to have trapping when both Q / Q ,  and #J are large. In 
figure 14 conditions are such that the trapped region disappears as the viscosity ratio 
decreases. 

_ _  

Rejlux limit 
We found in $3.5 that reflux, when i t  exists, occurs in a layer adjacent to the wall 

and spreads inward as viscosity ratio increases. Thus, to find the reflux limit we 
expand Q$ about the wall in terms of the small parameter E ,  where 

6 = $-q, 
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FIQURE 14. Streamlines in the wave frame showing the effect of viscosity ratio on trapping - _ _  
(shaded region), with fixed &. &/Qo = 0.9, q5 = 0.95, a = 0.8; , interface. 

and apply the reflux condition - 

Q&> 1 as6 +o.  (3.9) Q 
Using (2.8 b) ,  the first two terms in the expansion for r(<; $) are determined and the 
integration in (3.6) carried out to second order. (3.9) then yields the condition 
necessary for the occurrence of reflux : 

d(<O ( $ > O ) .  
( Q + H - 1 ) H  

~3 + ( p  - 1 ) rr: (3.10) 

The reflux limit is found iteratively by searching for the value of Q = QR which 
makes (3.10) an equality. Once found, Q, is obtained from (3.2a). In the limit p + 1 ,  
(3.10) reduces to Q < q52 as derived by Shapiro et al. (1969). 

The reflux limit becomes numerically unstable when q5 is small since in the limit 
q5 + O  both gR and Q, approach zero. Their ratio, however, is finite in this limit, and 
to find it requires a perturbation analysis around q5 = 0. The condition for reflux at  
q5 = 0 is found (see the Appendix) to be 

- 
[ 1 +  ( p  - 1 ) a312 

3 2 +a3(p- 1 )  [5 +a2(2p- ~ 3)] 1. Q <&?{ -- 
Qo 

(3.11) 
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FIGURE 15. The parametric pumping range defined by @ ‘Qo and 4 showing the areas in which reflux 
and trapping can occur with different viscosity ratios. The circles and triangles a t  4 = 0.7 show 
the location of the pump with fixed AP when ,u is varied. a = 0.8; 0 ,  AP = 10; 3, AP = 1. 

@ 

The reflux limit a t  different viscosity ratios is shown in figure 15. In the parameter 
space defined by Q/Qo and 4, an increase in viscosity ratio enlarges the area in which 
reflux may be found, while a decrease in viscosity decreases the reflux area. This is 
consistent with figure 12, where it was found that an increase in p resulted in an 
overall increase in reflux, or the tendency for reflux to appear if not previously 
existing. In the single-fluid axisymmetric case reflux occurs for the entire domain 
0 < o/Q, < 1, 0 6 4 6 1 (Shapiro et al. 1969). 

3.8. Comparisons at constant pressure head 
The basic conclusion one may draw from figure 15 is that overall both reflux and 
trapping increase when viscosity ratio increases, and decrease when viscosity ratio 
decreases. This follows when comparisons are made at the same volume flow rate, 
which is equivalent to remaining fixed at a point in figure 15 while varying p, and 
therefore AP. 

Consider now comparisons among pumps at  the same pressure head AP, so that 
an increase or decrease in p is accompanied by an increase or decrease in Q 
respectively. To see qualitatively the effect of the peripheral layer on reflux and 
trapping, we have plotted a series of points at 4 = 0.7 in figure 15 which correspond 
to different values o f p  when AP is held constant. The circles are for a constant AP 
of 10 and the triangles for a constant AP of 1. As p increases, &I&, increases; the 
smaller the value of AP, the more rapid the increase. 
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0.001 0.01 0.1 1 10 100 1000 

FIGURE 16. The variation with viscosity ratio of the average volume flow rate of the core fluid &, 
relative to  the total volume flow rate a, with AP or held constant. Net reflux in the peripheral 
layer exists when Q, /Q > 1. + = 0.7;  a = 0.8. 

P 

- -  

Qualitatively, the effect of the peripheral layer on trapping is the same with AP 
or & held constant. As viscosity ratio increases, trapping increases, and as viscosity 
ratio decreases, trapping decreases. However, with fixed AP the movement into or 
out of the trapping area is much more rapid than a t  fixed a; and unlike the case 
Q = constant, a decrease in p with constant AP always leads to the disappearance 
of trapping. 

With regard to reflux, the effect of the peripheral layer with fixed pressure head 
is quite different from that at constant flow rate. Whereas a decrease in p with fixed 
Q leads to a decrease or disappearance of reflux, a t  constant AP the peristaltic pump 
moves deep into the reflux region. Conversely, as p increases with fixed AP, reflux 
weakens, and depending on the value of AP, may disappear. 
- This opposite effect of the peripheral layer on reflux, depending on whether AP or 
Q is held constant, is shown clearly in figure 16, where the ratio of the average volume 
flow rate of the core fluid to the total flow rate is plotted against p with both AP 
and fixed. Since Q = net reflux in the peripheral layer occurs when 
QJQ > 1. At constant & reflux tends to appear a t  large p when i t  did not previously 
exist at small p, and reflux in general increases with increasing p. This behaviour 
is analogous to  figure 12, except that since Q2+0 as p+ 00, QJQ+ 1. 

The curves at constant AP, however, display quite a different behaviour. When 
reflux is already present in the peripheral layer, decreasing the viscosity ratio 
increases the relative amount of reflux. Even at  low values of AP, when reflux is not 
present a t  large p, reflux a t  some point appears and rapidly increases with decreasing 
p. At  the same time & is decreasing towards zero. At the point where & becomes 
negative, QJQ+ 00, so most of the reverse flow occurs in the peripheral layer. 

This behaviour is clearly displayed in figure 17 where GI, Q2 and Q are plotted 
against p for AP fixed. When AP = 1, Gz > 0 so &, < a. However, when y becomes 

- 

- 

- _  

- _  

_ -  
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FIGURE 17. &, &, and 8, plotted against ,u for AP = 1 ( ), where &, is the average 
volume flow rate in the core region, and &, in the peripheral layer (& = &,+&,). Q, has been 
multiplied by 10 for clarity. 

) and 10 ( 

= 0.7; a = 0.8. 

sufficiently small, reflux appears, Q, becomes negative and Q, > Q. When AP = 10, 
net reflux exists in the peripheral layer at  all ,u so Q, > Q everywhere. 

Observe in figure 17 that the effect of the peripheral layer on the core fluid (Q,) 
is qualitatively the same as with both fluids combined (Q). Again performance is 
improved by a more-viscous peripheral layer and degraded by a less-viscous 
peripheral layer. 

4. Summary and conclusions 
We have analysed the effect of a peripheral layer on peristaltic pumping of two 

Newtonian fluids at  low Reynolds number and small curvature. The solution for the 
interface, which is dynamically consistent with the equations of motion and satisfies 
continuity, is described by a fourth-order algebraic equation, solvable by radicals. 
We consider only the case where the interface defines a peripheral layer that remains 
outside any region of trapped fluid that may exist. From the solutions for the velocity 
and pressure fields we draw conclusions for the pump operating in the range 
0 < Q < Q, and 0 < AP < AP,, where Qo and AP, are the maximum positive values 
when AP and Q are zero respectively. 

In  assessing the effect of the peripheral layer we must specify which conditions are 
to be held constant while comparing pumps. We hold the wave shape and wave speed 
constant while making comparisons first with fixed flow rate Q, and then with fixed 
pressure head AP. The effect of the peripheral layer is not the same in the two 
comparisons. 
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4.1. Pumping characteristics 

The pumping characteristics are summarized in figures 6 and 9. In general, the 
relationship between AP and g is nonlinear and strongly dependent on viscosity 
ratio. As the viscosity ratio increases, pumping performance improves, which is to 
say that a t  fixed pressure head fluid is pumped at a higher volume flow rate, while 
at fixed volume flow rate the pump works against a greater pressure head, and the 
mechanical efficiency of the pump increases. As the viscosity ratio decreases, on the 
other hand, performance is badly degraded. In  fact as p+O the pressure head against 
which the pump can do work and the efficiency decrease to zero. Thus, if the pressure 
head is held constant and the viscosity ratio reduced, a point is reached where the 
pump no longer functions. Even a very thin peripheral layer can badly degrade 
pumping performance if the viscosity in the peripheral layer is small relative to  the 
fluid being pumped (figure 10). The same conclusions follow when considering the 
effect of the peripheral layer on the core fluid alone (figure 17). 

4.2. Trapping 

We have found that in comparing pumps, either with the same Q or the same AP, 
the general trend is towards a reduction in trapping as the viscosity ratio decreases, 
and an increase in trapping as the viscosity ratio increases. The results are best 
summarized in figure 15, which shows that as p decreases to zero the parameter 
domain in which trapping may be found shrinks to a small area at high values of 
Q and @. Thus, except at these large values of $ and Q, trapping will eventually 
disappear when the viscosity ratio becomes sufficiently small. The same trend occurs 
with fixed AP; however, trapping now always disappears for p sufficiently small. 

- 

4.3. Reflux 
As with the single-fluid pump, when reflux occurs it always appears adjacent to the 
wall. Holding fixed, this layer spreads inwards and the amount of reflux increases 
as the viscosity ratio increases. If not already in existence, reflux may appear, and 
then increase with increasing p. These trends are summarized in figure 15, where the 
pumping area over which reflux can be found broadens as the viscosity ratio 
increases. When comparisons are made a t  fixed AP, however, the opposite trends are 
observed. An increase in viscosity ratio decreases the amount of reflux, and 
conversely for decreasing p. Indeed, reflux always appears at sufficiently small 
viscosity ratios, then increases to large fractions of the total volume flow rate as the 
viscosity ratio decreases further. A t  the point where p is so small that the total 
volume flow rate becomes negative, the reverse flow occurs primarily in the peripheral 
layer. 

This work was supported by the Fluid Mechanics Program of National Science 
Foundation. 

A final comment : J. G. B. would like to express his great pleasure in having worked 
with Stan Corrsin these last few years. He will be missed. 
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Appendix. The reflux limit at $ = 0 
To find the reflux limit from (3.10) in the limit $ + O ,  we expand the reflux 

condition 

in a perturbation series in $, where H = 1 + $ sin 2 ~ 5 ,  and 

H ,  = a+a,q5+a2$2+ I . .  . (A 2) 

The coefficients a, and a, are found through a perturbation analysis of (2.11) for small 
$. Substituting the expansion for H ,  into (2.11) and equating coefficients at  each 
order yields a zeroth-order equation equivalent to (2.12), and at  higher orders 

a, = A ,  sin 2nc, a2 = A, sin2 2 ~ 5 ,  (A 3) 

where A ,  and A, are complicated functions of p, a, q, and 8. Thus, when (A 2) is 
substituted into (A 1)  and I expanded in q5) the terms involving j ia, dg drop out, 
leaving 

(A 4) 
I 
- = Q[1 +.f(a,p, A,,  A, )  $2]-83P[1 + (F- 1 )  a2A1]- 1) g2+ . I - ,  P 

where ,d = [l + a 3 ( p -  1)I-l  > 0. 

second order 
Replacing I in (A 1)  with (A 4) and solving for 8 leads to the reflux condition to 

(A 5) Q < 33P[ 1 + ( p - 1 ) a2A ,] - 1 } + . . . . 
A ,  to first order is 

A,  = +/3[3 + a2(2p - 3)]. 

In  the single-fluid limit p+ 1 (A 5) reduces to the result of Shapiro et al. 
(1969). 

To evaluate the reflux limit ratio oR/Qo we perform a similar perturbation analysis 
on Go. Substituting (A 2) into ( 3 . 2 ~ )  and expanding the integrals in $ leads to the 

< 

second-order result - 
Qo = $P[1+ (p-  1 )  C ~ ~ A , ]  $'+. . . . (A 7 )  

Both 8, (found by making (A 5 )  an equality) and 8, approach zero at the rate $z 
as $ + O .  Thus, the ratio approaches a finite limit, given by (3.11). 
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